180=(y^2-5)+(-8y+165)

Simple and best practice solution for 180=(y^2-5)+(-8y+165) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=(y^2-5)+(-8y+165) equation:



180=(y^2-5)+(-8y+165)
We move all terms to the left:
180-((y^2-5)+(-8y+165))=0
We calculate terms in parentheses: -((y^2-5)+(-8y+165)), so:
(y^2-5)+(-8y+165)
We get rid of parentheses
y^2-8y-5+165
We add all the numbers together, and all the variables
y^2-8y+160
Back to the equation:
-(y^2-8y+160)
We get rid of parentheses
-y^2+8y-160+180=0
We add all the numbers together, and all the variables
-1y^2+8y+20=0
a = -1; b = 8; c = +20;
Δ = b2-4ac
Δ = 82-4·(-1)·20
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12}{2*-1}=\frac{-20}{-2} =+10 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12}{2*-1}=\frac{4}{-2} =-2 $

See similar equations:

| 180=(y^2-5)+(-8y+165 | | 4n2–20n–11=0 | | 0.2x=-13(x+330) | | x^2+8x+16=144+x^2 | | 5=x−12 | | 4+2a=6+3a | | -2•14=32+-2h | | 14=32+-2h | | 14=-14+h | | -15+(-4m)=5 | | -15=(-4m)=5 | | 9x^2-34x+34=0 | | -5(10x)=-6 | | -5)10x)=-6 | | /x–24=341* | | 2x^2(x^2-4)+3x(x^2-4)+5(4-x^2)=0 | | 49^a=7 | | |5x–2|=13. | | 4(t-15)+-5=-1 | | -4n=-8(n-4) | | -8(-d-3)-8=2(5d+2) | | -2(-u-5)=4u-10 | | x⁴=81 | | q+12/4=0.6 | | -1=4(c-11)-17 | | 5y+28=10 | | 2m÷7=11 | | 45−2x=27 | | 18x+4=9x-86 | | x2=18 | | 1x=2=8= | | 2+3+w=10 |

Equations solver categories